"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СРАВНЕНИЯ ТЕОРЕМЫЗначение СРАВНЕНИЯ ТЕОРЕМЫ в математической энциклопедии:
в алгебраической геометрии - теоремы о связях между гомотопическими инвариантами схем конечного типа над полем в классической и этальной топологиях. Пусть X - схема конечного типа над a F - конструктивный периодический пучок абелевых групп на Тогда Fиндуцирует пучок на Xв классической топологии и существуют канонич. изоморфизмы С другой стороны, конечное топологич. накрытие гладкой схемы Xконечного типа над имеет единственную алгебраич. структуру (теорема существования Римана). Поэтому [1] этальная фундаментальная группа является проконечным пополнением обычной группы классов гомотопически эквивалентных петель: Если, кроме того, Xclass односвязна, то где и - классический и этальный гомотопические типы схемы Xсоответственно (см. [1], [2]). Лит.:[1] Artin M., в сб.: Тр. международного конгресса математиков. Москва, 1966, М., 1968, с. 44-56; [2] Сулливан Д., Геометрическая топология, пер. с англ., М., 1975.
|