"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СРАВНЕНИЕ ТОПОЛОГИЙЗначение СРАВНЕНИЕ ТОПОЛОГИЙ в математической энциклопедии: - отношение порядка в множестве всех топологий в одном и том же множестве. Топология мажорирует топологию (или не слабее если тождественное отображение где Xi - множество X, наделенное топологией i=l, 2, непрерывно. Если, кроме того, то сильнее (а слабее Следующие предложения равносильны. 1) мажорирует В упорядоченном множестве топологий на Xдискретная топология самая сильная, а топология, единственными замкнутыми множествами к-рой являются Ф и Х, самая слабая. Говоря образно, чем топология сильнее, тем больше в Xоткрытых множеств, замкнутых множеств, окрестностей; замыкание (соответственно, внутренность) множества тем меньше (соответственно, больше), чем топология сильнее, и тем меньше всюду плотных множеств. М. И. Войцеховский. |
|
|