"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СПЕКТРАЛЬНЫЕ ГОМОЛОГИИЗначение СПЕКТРАЛЬНЫЕ ГОМОЛОГИИ в математической энциклопедии: - обратный предел
групп гомологии с коэффициентами в абелевой группе Gнервов открытых покрытий топологии, пространства X(они наз. также гомологиями Чеха, или Александрова - Чеха). Для замкнутого множества группы могут быть определены аналогичным образом с помощью подсистем всех тех множеств из к-рые имеют непустое пересечение с А. Обратный предел групп пар G) наз. группой С. г. пары (X, А). Поскольку функтор обратного предела не сохраняет точность, гомологич. последовательность пары (X, А )вобщем случае не точна. Она полуточна в том смысле, что композиция любых двух отображений равна нулю. Для компактных Xпоследовательность оказывается точной в случае, когда G - компактная группа или иоле (в более общей ситуации - когда группа Gалгебраически компактна). С. г. непрерывны в том смысле, что
Отсутствие точности - не единственный недостаток С. г. Группы оказываются неаддитивными в том смысле, что гомологии дискретного объединения могут отличаться от прямой суммы G). От этого недостатка свободны спектральные гомологии с компактными носителями, определяемые как прямой предел взятый по всем компактным подмножествам Естественность функтора подтверждается также тем, что любые обычные гомологии (симплициальные, клеточные, сингулярные) - это гомологии с компактными носителями.
- производный функтор обратного предела). В общем случае имеется эпиморфизм к-рый имеет нулевое ядро для любой алгебраически компактной группы G. Для любого гомологически локально связного (по отношению к локально компактного пространства функторы и изоморфны. Лит.:[1] Стинрод Н., Эйленберг С., Основания алгебраической топологии, пер. с англ., М., 1958; [2] Скляренко Е. Г., лУспехи матем. наук
|
|
|