"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СПЕКТРАЛЬНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬЗначение СПЕКТРАЛЬНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ в математической энциклопедии: последовательность дифференциальных модулей, каждый из к-рых является модулем гомологии предшествующего дифференциального модуля. Обычно рассматривают С. п. биградуированных (реже градуированных или триградуированных) модулей, к-рые изображают графически в виде наложенных друг на друга таблиц на плоскости. Более общо, рассматривают также С. п. объектов произвольной абелевой категории (напр., бимодулей, колец, алгебр, коалгебр, алгебр Хопфа и т. д.).
Гомоморфизм dl=j1ki является дифференциалом в Е 1. По каждой точной паре можно построить производную точную пару (D2,E2,i2,y2,k2), для к-рой D2=Im i1 и E2=H(E1, d1). Итерирование этой конструкции дает С. п. Е={E п, dn}.
Модули образуют фильтрацию в H*(K). Биградуированный модуль
наз. присоединенным к Н * (К). Фильтрация {К р} наз. регулярной, если Kp=0 при р<0, при q<0и Для регулярной фильтрации или р<0 или q<0; такая С. п. наз. С. п. первой четверти. Кроме того, при r>max ( р,q+1). В этом случае говорят, что С. п. сходится к Н * (К), и пишут
где - система локальных коэффициентов над В, состоящая из групп Н q(F; G). При этом гомоморфизм совпадает с композицией
а гомоморфизм совпадает с композицией
где r достаточно велико. Дифференциал С. п. совпадает с трансгрессией:
В ее когомологич. варианте
Если R - поле и квадрат состоит из H-пространств и H-отображений, то эта С. п.- в категории биградуированных алгебр Хопфа.
где А р - Стинрода алгебра rnod p. Бистепень dr равна (r, r-1). Эта С. п. сходится в том смысле, что при r>s существует мономорфизм и, значит, определена группа Существует такая убывающая фильтрация {Fs} группы {Y, X} стабильных гомотопич. классов отображении что а состоит из всех элементов группы {Y, X} конечного порядка, взаимно простого с р. Эта С. п. при Х=Y=S позволяет лв принципе
|
|
|