"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СОХОЦКОГО ФОРМУЛЫЗначение СОХОЦКОГО ФОРМУЛЫ в математической энциклопедии: - формулы, найденные впервые Ю. В. Сохоцким [1] и выражающие граничные значения интеграла типа Коши. С более полными доказательствами, но значительно позже С. ф. были получены независимо Й. Племелем [2].
D+ - область внутри Г , D -- внешняя область;
- интеграл типа Коши. Тогда для любой точки существуют пределы
к-рые выражаются формулами Сохоцкого
или, иначе,
Интеграл вдоль Г в правых частях С. ф. понимается в смысле главного значения по Коши и наз. сингулярным интегралом. Таким образом, принимая при высказанных условиях Ф+(t)(или Ф -(t)) в качестве значений интеграла Ф(z) на Г , получают функцию Ф(z), непрерывную в замкнутой области (соответственно в в целом Ф(z) иногда описывают как кусочно аналитич. цию.
В случае разомкнутой кусочно гладкой кривой Г С. ф. (2) и (3) остаются в силе для внутренних точек дуги Г.
Естественно возникает вопрос о возможном расширении условий на контур Г и плотность с тем, чтобы С. ф., хотя бы с нек-рыми оговорками, сохраняли силу. Наиболее значительные результаты в этом направлении принадлежат В. В. Голубеву и И. И. Привалову (см. [6], [8]). Напр., пусть Г - спрямляемая жорданова кривая, а плотность по-прежнему непрерывна по Гёльдеру на Г. Тогда С. ф. (2) имеют место почти всюду на Г, причем под Ф +(t0) и Ф -(t0) понимаются угловые граничные значения интеграла типа Коши соответственно изнутри и извне Г, но функции Ф +(z) и Ф - (z), вообще говоря, уже не непрерывны в замкнутых областях О пространственных аналогах С. ф. см. в [7]. Лит.:[1] Сохоцкий Ю. В., Об определенных интегралах и функциях, употребляемых при разложениях в ряды, СПБ, 1873; [2] Р1еmе1j J., лMonatsh. Math, und Phys.
|
|
|