"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СОФОКУСНЫЕ КРИВЫЕЗначение СОФОКУСНЫЕ КРИВЫЕ в математической энциклопедии: конфокальные кривые,- линии 2-го порядка, имеющие общие фокусы. Если Fи F' - две данные точки плоскости, то через каждую точку плоскости проходит один эллипс и одна гипербола, имеющие Fи F' своими фокусами (рис. 1).
где с - расстояние фокусов от начала координат, а - переменный параметр. При это уравнение определяет эллипс, при - гиперболу (при -мнимую линию 2-го порядка). Если один из фокусов стремится к бесконечности, то в пределе получаются два семейства софокусных парабол (рис. 2); любые две параболы, относящиеся к разным семействам, также ортогональны друг другу. При помощи софокусных эллипсов и гипербол на плоскости вводится система так наз. эллиптических координат.
Именно, если М( х, у) - произвольная точка плоскости, то, подставляя ее координаты х и ув уравнение (*), получают квадратное уравнение для корни его и наз. эллиптич. координатами точки М. Сами софокусные эллипсы и гиперболы составляют координатную сеть эллиптической координатной системы, т. е. определяются уравнениями |
|
|