"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СОВЕРШЕННОЕ ПОЛЕЗначение СОВЕРШЕННОЕ ПОЛЕ в математической энциклопедии: - поле k, любой многочлен над к-рым сепарабелен. Иначе говоря, любое алгебраич. расширение поля k- сепарабельное расширение. Все остальные поля наз. несовершенными. Все поля характеристики 0 совершенны. Поле kконечной характеристики рсовершенно тогда и только тогда, когда k=kP, т. е. возведение в степень рявляется автоморфизмом поля k. Конечные поля и алгебраически замкнутые поля совершенны. Пример несовершенного поля - поле Fq(X)рациональных функций над полом Fq, где Fq - поле из q=pn элементов. С. п. kсовпадает с полем инвариантов группы всех k-автоморфизмов алгебраич. замыкания поля k. Любое алгебраич. расширение С. и. снова совершенно. Лит.:[1] Бурбаки Н., Алгебра. Многочлены и поля. Упорядоченные группы, пер. с франц., М., 1965; [2] 3арисский О., Самюэль П., Коммутативная алгебра, пер. с англ., т. 1, М., 1963. |
|
|