"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СОБСТВЕННЫЙ ВЕКТОРЗначение СОБСТВЕННЫЙ ВЕКТОР в математической энциклопедии:
оператора А, действующего в векторном пространстве Lнад полем k - ненулевой вектор к-рый переводится данным оператором в пропорциональный ему вектор, т. е. Коэффициент наз. собственным значением оператора А. Если оператор А линеен, то множество всех С. в., отвечающих собственному значению вместе с нулевым вектором, является линейным подпространством. Оно наз. собственным подпространством оператора А, отвечающим собственному значению и совпадает с ядром оператора (т. е. с множеством векторов, переводимых этим оператором в 0). Если L - топологич. векторное пространство и А - непрерывный оператор, то замкнуто для любого Вообще говоря, собственное подпространство не обязано быть конечномерным, но если А вполне непрерывен (компактен), то конечномерно для любого ненулевого В сущности, наличие С. в. у операторов в бесконечномерных пространствах - явление довольно редкое, хотя важные для приложений операторы специальных классов (интегральные, дифференциальные и т. п.) часто обладают обширными наборами С. в. Обобщением понятий С. в. и собственного подпространства являются понятия корневого вектора и корневого подпространства. У нормальных (в частности, самосопряженных или унитарных) операторов все корневые векторы являются собственными, и собственные подпространства, отвечающие различным С. в., взаимно ортогональны. Лит.:[1] Иосида К., Функциональный анализ, пер. с англ., М., 1967; [2] Люстерник Л. А., Соболев В. Н , Элементы функционального анализа, 2 изд., М., 1965; [3] Канторович Л. В., Акилов Г. П., Функциональный анализ, 2 изд., М., 1977. Т. С. Пиголкина, В. С. Шулъман.
|