"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СОБСТВЕННЫЕ ЗНАЧЕНИЯ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВЗначение СОБСТВЕННЫЕ ЗНАЧЕНИЯ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ в математической энциклопедии: численные методы нахождения - методы вычисления полного спектра интегрального оператора или его части (чаще всего ставится задача отыскания одного-двух минимальных или максимальных по модулю собственных значений). Численные методы нахождения собственных значений интегральных операторов Фредгольма. Задача о собственных значениях и собственных функциях интегрального оператора Фредгольма заключается в нахождении таких комплексных чисел для к-рых существует нетривиальное (в данном функциональном классе) решение интегрального уравнения
В уравнении (1) К( х, s)- функция (или матрица-функция) двух групп переменных хи s такая, что интегральный оператор с ядром К - фредгольмов в рассматриваемом функциональном классе; D - область в евклидовом пространстве Функциональным классом может быть пространство С(D)непрерывных функций на D, или L2(D) - квадратично интегрируемых функций на D,или другие функциональные пространства.
где si - узлы квадратурной формулы, - ее веса (см. [3] - [5]).
Для решения задачи (3) можно воспользоваться любыми методами нахождения собственных значений и векторов (более общо - корневых многообразий), разработанных в линейной алгебре (см. Линейная алгебра;численные методы). Найденные собственные значения и векторы алгебраич. задачи (3) будут близки к нек-рым собственным значениям и элементам основной задачи (1), если в определенном смысле близки операторы Аи Вместо (2) можно использовать и иные аппроксимации интегрального оператора. Основная задача (1) при этом редуцируется к алгебраич. задаче, аналогичной задаче (3). Исследование близости решений задач (1) и (3) проводится методами функционального анализа в рамках общей теории приближенных методов.
Задача (3) интерпретируется как задача на собственные значения оператора близкого к А, но действующего, вообще говоря, в другом пространстве (связанном с Ф):
В общей теории приближенных методов доказываются различные теоремы о близости решений задач (4) и (5). В качестве примера подобных утверждений можно привести следующее. Пусть А n- последовательность операторов действующих в Ф и
Тогда где - спектр соответствующих операторов. В этом случае каждое совпадает с Ф. Обобщенные задачи о собственных значениях. В приложениях исследуются и более общие, чем (4) задачи о нахождении критич. параметров типа собственных значений. В абстрактной форме подобные задачи могут быть сформулированы следующим образом. Требуется найти, при каких значениях параметра уравнение имеет более одного решения относительно ( А - некоторый нелинейный интегральный оператор в банаховом пространстве Ф, зависящий от комплексного параметра
Если то оператор обратим; собственные значения удовлетворяющие неравенству могут быть найдены из соотношения
где Уравнение (7) эквивалентно (относительно Z) нек-рой системе линейных алгебраич. уравнений. Приравнивание к нулю ее определителя дает уравнение, корни к-рого являются собственными значениями интегрального оператора (1). Это рассуждение справедливо вообще для произвольного вполне непрерывного оператора . в банаховом пространстве Ф, если этот оператор допускает аппроксимацию по норме операторами с конечномерной областью значений. Конструкция (7) может быть использована для уточнения приближенно найденного собственного значения (и собственной функции). Лит.:[1] Канторович Л. В., Крылов В. И., Приближенные методы высшего анализа, 5 изд., М.- Л., 1962; [2] Красносeльский М. А. [и др.], Приближенное решение операторных уравнений, М., 1969; [3] Березин И. С., Жидков Н. П., Методы вычислений, 2 изд., т. 2, М., 1962; [4] Крылов В. И., Бобков В. В., Монастырный П. П., Вычислительные методы, т. 2, М., 1977; [5] Мысовских И. П., лМетоды вычислений
|
|
|