"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СОБСТВЕННОЕ ЗНАЧЕНИЕЗначение СОБСТВЕННОЕ ЗНАЧЕНИЕ в математической энциклопедии: оператора (преобразования) А векторного пространства Lнад полем k - элемент такой, что существует ненулевой вектор удовлетворяющий условию
Вектор хв этом равенстве наз. собственным векторам оператора А, принадлежащим С. з. В случае, когда оператор А линеен, С. з.- это такой элемент что оператор (где I - тождественный оператор) не инъективен. Если пространство . конечномерно, то С. з. совпадают с корнями характеристического многочлена (из поля k), где А - матрица линейного преобразования А в нек-ром базисе, а Е - единичная матрица. Кратность С. з. как корня этого многочлена наз. алгебраической кратностью. Для любого линейного преобразования конечномерного пространства над алгебраически замкнутым полем kмножество С. з. непусто. Оба условия - конечномерность и алгебраич. замкнутость - существенны. Напр., поворот евклидовой плоскости на любой угол, не кратный не имеет С. з. С другой стороны, для оператора в гильбертовом пространстве, сопряженного сдвигу, каждое число из открытого единичного круга - С. з. Лит. см. при статьях Линейное преобразование. Матрица. |
|
|