"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СЛУЧАЙНЫХ ВЕЛИЧИН ПРЕОБРАЗОВАНИЕЗначение СЛУЧАЙНЫХ ВЕЛИЧИН ПРЕОБРАЗОВАНИЕ в математической энциклопедии:
отыскание функций от каких-либо случайных величин, распределения вероятностей к-рых обладают заданными свойствами. Пример 1. Пусть X - случайная величина, имеющая непрерывную и строго возрастающую функцию распределения F(х). Тогда случайная величина Y=F(X)имеет равномерное на отрезке [0, 1] распределение, а случайная величина Z= Ф -1(F(Х)) (где Ф (x) - стандартная нормальная функция распределения) имеет нормальное распределение с параметрами 0 и 1. Обратно, формула X = F-l (Ф(Z)) позволяет из случайной величины Zсо стандартным нормальным распределением получить случайную величину X, имеющую заданную функцию распределения F(x). С . в. п. часто используются в связи с предельными теоремами теории вероятностей. Пусть, напр., последовательность случайных величин Zn асимптотически нормальна с параметрами (0, 1). Ставится задача построения простых (и просто обратимых) функций fn таких, чтобы случайные величины Vn=Zn+fn(Zn) были лболее нормальны
|