"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СИМПСОНА ФОРМУЛАЗначение СИМПСОНА ФОРМУЛА в математической энциклопедии: - частный случай Ньютона - Котеса квадратурной формулы, в к-рой берутся три узла: Пусть промежуток [а, b]разбит на пчастичных промежутков [xi, xi+1], i=0, 1, 2, ..., n-1, длины h=(b-а)/п, при этом n считается четным числом, и для вычисления интеграла по промежутку использована квадратурная формула (1): Суммирование по kот 0 до n/2-1 левой и правой частей этого равенства приводит к составной С. ф.: где xj=a+jh, j = 0, 1, 2, ..., п. Квадратурную формулу (2) также называют С. ф. (без добавления слова составная). Алгебраич. степень точности квадратурной формулы (2), как и формулы (1), равна 3. Если подинтегральная функция f(х).имеет непрерывную производную 4-го порядка на [а, b], то погрешность R(f) квадратурной формулы (2) - разность между левой и правой частями приближенного равенства (2) - имеет представление где x - нек-рая точка из промежутка [а, b]. С. ф. названа но имени Т. Симпсона (Th. Simpson),. получившего ее в 1743, хотя эта формула была известна ранее, напр. Дж. Грегори (J. Gregory, 1668). И. П. Мысовских. |
|
|