"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СИЛЬНЫЙ ИНТЕГРАЛЗначение СИЛЬНЫЙ ИНТЕГРАЛ в математической энциклопедии: - интеграл лебеговского типа от функций со значениями в линейном топологич. пространстве по скалярной мере или от скалярной функции по мере со значениями в векторном пространстве. При этом предельные процессы, с помощью к-рых определяется интеграл, понимаются в смысле сильной топологии. Примерами С. и. являются: 1) Бохнера интеграл от векторнозначной функции; 2) Даниеля интеграл, если значения подинтегральной функции принадлежат s-полной векторной решетке ; 3) интеграл , дающий спектральное разложение самосопряженного оператора, действующего в гильбертовом пространстве. В С. и. от скалярных функций по векторной мере значения меры во многих случаях предполагаются принадлежащими векторному полуупорядоченному пространству. Лит.:[1] Д а н ф о р д Н., Ш в а р ц Д ж.-Т., Линейные операторы, пер. с англ., т. 1-2, М., 1962-66; [2] Н i I d е b r a n d t Т. Н., "Bull. Amer. Math. Soc.", 1953, v. 59, p; 111-139. В. И. Соболев. |
|
|