"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СЕПАРАБЕЛЬНАЯ АЛГЕБРАЗначение СЕПАРАБЕЛЬНАЯ АЛГЕБРА в математической энциклопедии: конечномерная полупростая ассоциативная алгебра Анад полем k, остающаяся полупростой при любом расширении Kполя k(т. е. алгебра полупроста для любого поля ). Алгебра Асепарабельна тогда и только тогда, когда центры простых компонент этой алгебры (см. Ассоциативные кольца и алгебры )являются сепарабельными расширениями поля k. Лит.:[1] В а н д е р В а р д е н Б. Л., Алгебра, пер. с нем., 2 изд., М., 1979; [2] К э р т и с Ч., Р а й н е р И., Теория представлений конечных групп и ассоциативных алгебр, пер. с англ., М., 1969. Л. А. Бокуть. |
|
|