"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СВЯЗАННАЯ ПЕРЕМЕННАЯЗначение СВЯЗАННАЯ ПЕРЕМЕННАЯ в математической энциклопедии: , связанное вхождение переменной,- тип вхождения переменной в языковое выражение. Точное определение для каждого формализованного языка - свое и зависит от правил образования этого языка. Вместо С. н. нельзя подставлять объекты. Такая подстановка приводит к бессмысленным выражениям. Но замена С. п. всюду, где она встречается, на новую для данного выражения переменную приводит к выражению с тем же самым смыслом. Напр., в выражениях переменная хявляется связанной. Подстановка вместо хкакого-нибудь числа приводит к бессмысленным выражениям. В то же время, написав всюду вместо х, например z, получают выражения, обозначающие те же самые сущности. С. п. всегда возникают при применении к нек-рому выражению есо свободными вхождениями переменной хкакого-нибудь оператора с операторной неременной х(см. Свободная переменная). В получившемся выражении все вхождения переменной хв е, бывшие свободными, становятся связанными. Ниже указаны нек-рые наиболе употребительные операторы (помимо уже использованных операторов и , в к-рых хявляется операторной переменной: - кванторы общности и существования; - определенный интеграл по х; -сумма по х; lх(. ..) - функция от х, значение к-рой в точке хравно . . . Вместо многоточий можно подставлять определенные языковые выражения. В реальных (не формализованных) математич. текстах возможно неоднозначное употребление одних и тех же выражений, в связи с чем выделение С. п. в данном выражении зависит от контекста и смысла выражения. В формализованных языках имеется формальная процедура выделения свободных и связанных вхождений переменных. В. Н. Гришин. |
|
|