Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

СВЯЗАННАЯ ПЕРЕМЕННАЯ

Значение СВЯЗАННАЯ ПЕРЕМЕННАЯ в математической энциклопедии:

, связанное вхождение переменной,- тип вхождения переменной в языковое выражение. Точное определение для каждого формализованного языка - свое и зависит от правил образования этого языка. Вместо С. н. нельзя подставлять объекты. Такая подстановка приводит к бессмысленным выражениям. Но замена С. п. всюду, где она встречается, на новую для данного выражения переменную приводит к выражению с тем же самым смыслом. Напр., в выражениях


переменная хявляется связанной. Подстановка вместо хкакого-нибудь числа приводит к бессмысленным выражениям. В то же время, написав всюду вместо х, например z, получают выражения, обозначающие те же самые сущности.

С. п. всегда возникают при применении к нек-рому выражению есо свободными вхождениями переменной хкакого-нибудь оператора с операторной неременной х(см. Свободная переменная). В получившемся выражении все вхождения переменной хв е, бывшие свободными, становятся связанными. Ниже указаны нек-рые наиболе употребительные операторы (помимо уже использованных операторов и , в к-рых хявляется операторной переменной:

- кванторы общности и существования;

- определенный интеграл по х;

-сумма по х;

lх(. ..) - функция от х, значение к-рой в точке хравно . . .

Вместо многоточий можно подставлять определенные языковые выражения.

В реальных (не формализованных) математич. текстах возможно неоднозначное употребление одних и тех же выражений, в связи с чем выделение С. п. в данном выражении зависит от контекста и смысла выражения. В формализованных языках имеется формальная процедура выделения свободных и связанных вхождений переменных. В. Н. Гришин.