"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СБАЛАНСИРОВАННОЕ КОЛЬЦОЗначение СБАЛАНСИРОВАННОЕ КОЛЬЦО в математической энциклопедии: левое (правое) - кольцо, над к-рым все левые (правые) модули сбалансированы. Кольцо сбалансировано слева тогда и только тогда, когда все его факторкольца суть QF-1-к о л ь ц а, т. е. все точные левые модули над ними сбалансированы. В частности, кольцо сбалансировано, если все эти факторкольца квазифробениусовы. Всякое С. к. разлагается в прямую сумму однорядного кольца и колец матриц над локальными кольцами специального типа. Любое С. к. полусовершенно. Нётерово С. к. оказывается артиновым. Лит.:[1] Итоги науки и техники. Алгебра. Топология. Геометрия, т. 19, М., 1981, с. 31-134; [2] Ф е й с К., Алгебра: кольца, модули и категории, пер. с англ., т. 1-2, М., 1977-79. Л. А. Скорняков. |
|
|