"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
РУНГЕ ПРАВИЛОЗначение РУНГЕ ПРАВИЛО в математической энциклопедии: - один пз методов оценки погрешности формул численного интегрирования. Пусть - остаточный член формулы численного интегрирования, где h - длина отрезка интегрирования или какой-то его части, k - фиксированное число и М - произведение постоянной на производную подинтегральной функции порядка k-1 в какой-то точке промежутка интегрирования. Если J - точное значение интеграла, а I - его приближенное значение, то Согласно Р. п. вычисляется тот же самый интеграл по той же формуле численного интегрирования, но вместо hберется величина h/2. При этом, чтобы получить значение интеграла по всему отрезку, формула интегрирования применяется дважды. Если производная, входящая в М, меняется не сильно на рассматриваемом промежутке, то где I1 - значение интеграла, вычисленное по h/2. Р. п. используется и при численном решении дифференциальных уравнений. Правило предложено К. Рунге (С. Runge, нач. 20 в.). |
|
|