"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
РИССОВ ТЕОРЕМАЗначение РИССОВ ТЕОРЕМА в математической энциклопедии: - 1) Р, т. единственности для ограниченных аналитических функций: если f(z) - ограниченная регулярная аналитич. ция в единичном круге , имеющая радиальные граничные значения нуль на множестве Еточек окружности положительной меры, mes Е> 0, то . Теорема сформулирована и доказана братьями Ф. Риссом и М. Риссом (F. Riesz, M. Riesz, 1916, см. [1]). Это - одна из первых граничных теорем единственности для аналитич. ций. Независимо от братьев Риссов наиболее общие граничные теоремы единственности были получены Н. Н. Лузиным и И. И. Приваловым (см. [2], [3]). Эта теорема допускает обобщение для интегралов Коши по любому спрямляемому контуру Г (см. [3]). Лит.:[1] R i e s z F., Euvres completes, t. 1, P.-Bdpst, 1960, p. 537 - 54; [2] П р и в а л о в И. И., Интеграл Cauchy, Саратов, 1918; [3] е г о ж е, Граничные свойства аналитических функций, 2 изд., М.-Л., 1950. Е. Д. Соломенцев. |
|
|