"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
РЕШЕТКА С ДОПОЛНЕНИЯМИЗначение РЕШЕТКА С ДОПОЛНЕНИЯМИ в математической энциклопедии: решетка L с нулем 0 и единицей 1, в к-рой для любого элемента асуществует такой элемент b(наз. д о п о л н е н и е м э л е м е н т а а), что и . Произвольную решетку можно вложить в решетку, каждый элемент к-рой обладает единственным дополнением. Если для любых интервал[а, b]является Р. с д., то L наз. р е ш е т к о й с о т н о с и т е л ь н ы м и д о п о лн е н и я м и. Каждая модулярная Р. с д. является решеткой с относительными дополнениями. Решетка L с нулем 0 называется: а) р е ш е т к о й с ч а с т и чн ы м и д о п о л н е н и я м и, если каждый ее интервал вида [0, а], , является Р. с д.; б) р е ш е т к о й с о с л а б ы м и д о п о л н е н и я м и, если для любых существует такой элемент , что и ; в) р е ш е т к о й с полудополнениями, если для любого , существует такой элемент , что ; г) р е ш е т к о й с п с е в д о д о п о л н е н и я м и, если для любого существует такой элемент а*, что тогда и только тогда, когда ; д) р е ш е т к о й с к в а з ид о п о л н е н и я м и, если для любого существует такой элемент , что является плотным элементом. Большую роль играют также решетки с ортодополнениями (см. Ортомодулярная решетка). О связи между различными типами дополнений в решетках см. [4]. Лит.:[1] Б и р к г о ф Г., Теория структур, пер. с англ., М., 1952; [2] С к о р н я к о в Л. А., Элементы теории структур, 2 изд., М., 1982; [3] е г о ж е, Дедекиндовы структуры с дополнениями и регулярные кольца, М., 1961; [4] G r i 1 1 е t Р. А., V a r l e t J. С., "Bull. Soc. roy. Sci. Liege", 1967, t. 36, № 11 - 12, p. 628-42. Т. С. Фофанова. |
|
|