"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕЗначение РЕКУРСИВНОЕ ОПРЕДЕЛЕНИЕ в математической энциклопедии: часто применяемый в математике способ задания функций, при к-ром значение искомой функции в данной точке определяется через ее значения в предшествующих точках (при подходящем отношении предшествования). Р. о. теоретико-числовых функций являются объектами изучения в теории алгоритмов (см. Рекурсия). В теории множеств постоянно используется для определения функций на ординалах трансфинитная рекурсия. В более общем плане Р. о. рассматриваются в теории допустимых множеств, в основе к-рой лежит некий синтез идей теории множеств и теории алгоритмов (см. [2]). Лит.:[1] Р о д ж е р с X., Теория рекурсивных функций и эффективная вычислимость, пер. с англ., М., 1972; [2] В а r w i s e J., Admisible sets and structures, В., 1975. |
|
|