"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
БИКАТЕГОРИЯЗначение БИКАТЕГОРИЯ в математической энциклопедии: - категория , в к-рой выделены подкатегория эпиморфизмов и подкатегория мономорфизмов таким образом, что выполняются следующие условия: 1) всякий морфизм из категории разлагается в произведение , где 2) если где _ то существует такой изоморфизм , что , и 3) совпадает с классом изоморфизмов категории . Эпиморфизмы из (мономорфизмы из ) наз. допустимыми эпиморфизмами (мономорфизмам и) бикатегории. Понятие Б. аксиоматизирует возможность разложения произвольного отображения в произведение сюръективного и инъективного отображений. Категория множеств, категория множеств с отмеченной точкой, категория групп являются бикатегориями с единственной бикатегорной структурой. В категории всех топо-логич. пространств, а также в категории всех ассоциативных колец имеется целый класс различных бикате-горных структур. Лит.:[1] Цаленко М. Ш., Шульгейфер Е. Г., Основы теории категорий, М., 1974. М. Ш. Цаленко. |
|
|