"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
БИВЕКТОРНОЕ ПРОСТРАНСТВОЗначение БИВЕКТОРНОЕ ПРОСТРАНСТВО в математической энциклопедии: центроаффинное пространство к-рое может быть отнесено каждой точке пространства аффинной связности (в частности, риманова пространства ). Пусть в точке пространства (или ) рассматриваются все тензоры, у к-рых ковариантная и контравариантная валентности четные; ковариант-ные и контравариантные индексы разбиваются на отдельные пары, для каждой из к-рых тензор кососим-метричен. Тензоры, обладающие этими двумя свойствами, наз. битензорами. Если принять каждую кососшшетрическую пару индексов за один собирательный индекс, то число новых индексов будет равно Простейшим битензором является бивектор Если в точке пространства то , и совокупность бивекторов из А п (или из ) в данной точке определяет совокупность векторов с N компонентами, удовлетворяющими условиям т. е. эта совокупность определяет центроаффинное пространство , наз. бивекторным пространством. В Б. п. может быть метризовано при помощи метрич. тензора после чего становится метрич. пространством . Б. <п. имеют применение в римановой геометрии и общей теории относительности. В данной точке пространства строится Б. п. , а тензору кривизны с компонентами сопоставляется тензор второй валентности с компонентами соответственно. Тогда задача изучения алгебраич. структуры тензора кривизны пространства может быть сведена к изучению пучка квадратичных форм вторая из к-рых невырожденная . Исследование элементарных делителей этой пары приводит к классификации пространств . При и сигнатуре формы доказывается, что существует всего три различных типа пространств Эйнштейна. Каждому вращению в может быть отнесен бивектор; значит, в ему соответствует вектор, что оказывается удобным при исследовании бесконечно малых преобразований. Б. п. по существу совпадают с бипланарными пространствами[2]. Лит.: [1] Петров А. 3., Новые методы в общей теории .относительности, М., 1966; [2] Норден А. П., "Уч. зап. Каз. ун-та", 1954, в. 114, кн. 8. А. 3. Петров. |
|
|