Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

РАНГ ГРУППЫ

Значение РАНГ ГРУППЫ в математической энциклопедии:

(общий и специальный) - понятие теории групп. Группа G имеет конечный общий р а н г r, если r - наименьшее число с тем свойством, что всякая конечно порожденная подгруппа группы Gсодержится в подгруппе, обладающей r' образующими . Группа G имеет конечный специальный ранг r, если rявляется наименьшим числом с тем свойством, что всякая конечно порожденная подгруппа группы G обладает системой образующих, содержащей не более чем rэлементов. В случае, если соответствующего конечного числа не существует, общий (специальный) Р. г. считается бесконечным.

Общий Р. г. меньше или равен ее специальному рангу. Существуют группы, общий ранг к-рых конечен (и даже равен двум), в то время как специальный ранг бесконечен. Такова, напр., счетная симметрич. группа. Для абелевых групп общий и специальный ранги совпадают с рангом Прюфера (см. Абелева группа).

Лит.:[1] К у р о ш А. Г., Теория групп, 3 изд., М., 1967.

О. А. Иванова.