"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
РАНГ ГРУППЫЗначение РАНГ ГРУППЫ в математической энциклопедии: (общий и специальный) - понятие теории групп. Группа G имеет конечный общий р а н г r, если r - наименьшее число с тем свойством, что всякая конечно порожденная подгруппа группы Gсодержится в подгруппе, обладающей r' образующими . Группа G имеет конечный специальный ранг r, если rявляется наименьшим числом с тем свойством, что всякая конечно порожденная подгруппа группы G обладает системой образующих, содержащей не более чем rэлементов. В случае, если соответствующего конечного числа не существует, общий (специальный) Р. г. считается бесконечным. Общий Р. г. меньше или равен ее специальному рангу. Существуют группы, общий ранг к-рых конечен (и даже равен двум), в то время как специальный ранг бесконечен. Такова, напр., счетная симметрич. группа. Для абелевых групп общий и специальный ранги совпадают с рангом Прюфера (см. Абелева группа). Лит.:[1] К у р о ш А. Г., Теория групп, 3 изд., М., 1967. О. А. Иванова. |
|
|