Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

РАЗНОСТНАЯ СХЕМА

Значение РАЗНОСТНАЯ СХЕМА в математической энциклопедии:

- система разностных уравнений, аппроксимирующих дифференциальное уравнение и дополнительные (начальные, граничные и др.) условия. Аппроксимация исходной дифференциальной задачи Р. с.- это один из способов приближенной дискретизации исходной задачи. Он заключается в том, что заданную область изменения независимых переменных Gзаменяют дискретным множеством точек Gh - с е т к о й, а производные, входящие в дифференциальное уравнение, заменяют на сетке Gh, разностными отношениями. В результате такой замены возникает замкнутая система большого числа алгебраич. уравнений (линейных или нелинейных в зависимости от исходной дифференциальной задачи), к-рая и представляет собой Р. с. По существу Р. с.- это семейство разностных уравнений, зависящих от шагов сетки. Решение Р. с. также зависит параметрически от шагов сетки. Р. с.- многопараметрический и сложный объект. Помимо коэффициентов исходного дифференциального уравнения она содержит свои собственные параметры такие, как шаги по времени и пространству, весовые множители и др. Влияние этих параметров может существенно исказить представление о поведении исходной дифференциальной задачи.

В связи с разностной аппроксимацией дифференциальных задач изучаются следующие вопросы: о способах построения Р. с., о сходимости при измельчении сетки решения разностной задачи к решению исходной дифференциальной задачи, о методах решения систем разностных уравнений. Все перечисленные вопросы рассматривает разностных схем теория. Разработаны эффективные численные методы решения типичных Р. с. для обыкновенных дифференциальных уравнений и уравнений с частными производными, предполагающие использование быстродействующих ЭВМ.

Ниже приводится простой пример Р. с. Пусть имеется дифференциальная задача

(1) Область G{0<x<l} заменяется соткой


Р. с. для задачи (1) имеет вид

(2)

где . Можно показать, что при решение разностной задачи (2) сходится к решению исходной задачи (1) и при достаточной гладкости функции Р. с. (2) имеет второй порядок точности, где М - постоянная, не зависящая от h. РешениеР. <с.(2) находится методом прогонки.

Лит.:[1] С а м а р с к и й А. А., Теория разностных схем, М., 1977; [2] С а м а р с к и й А. А., Н и к о л а е в Е. С., Методы решения сеточных уравнений, М., 1978.

А. В. Гулин, А. А. Самарский.