Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

РАВНОМЕРНОЙ СХОДИМОСТИ ТОПОЛОГИЯ

Значение РАВНОМЕРНОЙ СХОДИМОСТИ ТОПОЛОГИЯ в математической энциклопедии:

топология пространства отображений множества Xв равномерное пространство У, порожденная равномерной структурой множества , базой окружений к-рой являются совокупности всех пар

таких, что

для любого и vпробегает базу окружений пространства Y. Сходимость направления к в такой топологии наз. сходимостью к f0, равномерной на множестве X. Если Yполно, то - полное пространство в топологии равномерной сходимости. Если X - топологич. пространство и - множество всех непрерывных в топологии пространства Xотображений X в Y, то замкнуто в в Р. с. т.; в частности, предел f0(x).равномерно сходящейся последовательности fn(x).непрерывных на Xотображений есть отображение, также непрерывное на X.

Лит.:[1] Бурбаки Н., Общая топология. Использование вещественных чисел в общей топологии. Функциональные пространства. Сводка результатов. Словарь, пер. с франц., М., 1975; [2] Келли Д ж., Общая топология, пер. с англ., 2 изд., М., 1981. В. И. Соболев.