Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

БЕССЕЛЕВА СИСТЕМА

Значение БЕССЕЛЕВА СИСТЕМА в математической энциклопедии:

- понятие теории ортогональных систем. Пусть - две полные системы функций из (т. е. измеримых функций, интегрируемых с квадратом на отрезке ), образующие биортогоналъную систему функций. Система наз. бесселевой, если для любой функции сходится ряд


где - коэффициенты разложения:


функции по системе . Для того чтобы система была Б. с., необходимо и достаточно, чтобы в пространстве можно было определить такой ограниченный линейный оператор , что система , определенная равенством , является полной ортонормированной системой. Если система бесселева, то существует константа Мтакая, что для любой


Лит.:[1] Качмаж С.,Штейнгауз Г., Теория ортогональных рядов, пер. с нем., М., 1958, с. 430-40.

П. И. Лизоркин.