Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

БЕСКОНЕЧНОГО ПОРЯДКА УРАВНЕНИЕ

Значение БЕСКОНЕЧНОГО ПОРЯДКА УРАВНЕНИЕ в математической энциклопедии:

в комплексной области - дифференциальное уравнение вида


где - искомая функция комплексного переменного - заданные .функции. Наиболее полно изучены .Б. п. у. с постоянными коэффициентами:


Если .характеристич. функция


есть целая функция экспоненциального типа , то левая часть имеет смысл при , когда - функция, аналитическая в круге . При необходимо предположить, что - целая функция. Отличие от уравнения конечного порядка состоит уже в том, что решение может иметь особенности, даже когда - целая функция. Если и есть целая функция, то область существования любого решения выпукла [1]. Общее решение слагается из частного решения и общего решения соответствующего однородного уравнения. Пусть - корни характеристич. уравнения и - соответственно их кратности. Однородное уравнение имеет элементарные частные решения . Решению однородного уравнения можно отнести по определенному правилу ряд из элементарных решений. Если характеристич. функция имеет правильный рост (в нек-ром определенном смысле), то найдется . подпоследовательность частичных сумм этого ряда, сходящаяся к (см. [4]). В общем случае функцию можно аппроксимировать с любой точностью конечными линейными комбинациями из элементарных решений [5]. В случае Б. п. у. может иметь неаналитические решения [2]. При нек-рых условиях эти решения образуют квазианалитический класс функций с менее сильными ограничениями на рост производных, чем в классич. теореме Данжуа - Карлемана.

Б. п. у. имеют различные применения: для изучения последовательностей полиномов Дирихле, полноты систем аналитических функций, единственности аналитических и гармонических функций, разрешимости таких проблем анализа, как обобщенная проблема квазианалитичности, обобщенная проблема единственности моментов и т. д.

Лит.:[1] Ро1уa G., "Nachr. Ges. Wiss. Gottingen", 1927, S. 187-95; [2] Va1irоn G., "Ann. sclent. Ecole norm, super.", 1929, t. 46, № 1, p. 25-53; (3] Леонтьев А. Ф., "Тр. четвертого всесоюзн. матем. съезда", Л., 1964, т. 2, с. 648-60: [4] его же, "Матем. сб.", 1966, т. 70, № 1, с. 132-44; [5] Красичко в-Терновский И. Ф., "Матем. сб.", 1972, т. 88, № 3, с. 331 - 52. А. Ф. Леонтьев.