"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
БЕСКОНЕЧНАЯ ИГРАЗначение БЕСКОНЕЧНАЯ ИГРА в математической энциклопедии: - бескоалиционная игра, в-.частности антагонистическая игра, с бесконечными множествами стратегий игроков. Пусть - Б. и. плиц. К. Берж доказал [см. 1], что если - локально выпуклые бикомпактные линейные топологические пространства, функции выигрыша непрерывны на и квазивогнуты по , то в игре существуют ситуации равновесия. Показано также [2], что если - бикомпактные хаусдорфовы пространства, непрерывны на то игра имеет ситуации равновесия в смешанных стратегиях. Однако не все Б. и. имеют ситуации равновесия даже в смешанных стратегиях. Напр., для антагонистич. игры, в к-рой пространствами стратегий игроков являются множества целых чисел, а функция выигрыша имеет вид не существует значения. Наиболее исследованным классом Б. и. в нормальной форме являются бесконечные антагонистич. игры и, в частности, игра на единичном квадрате. Лит.:[1] Берж К., Общая теория игр нескольких лиц, пер. с франц., М., 1961; [2] Гликсберг И. Л., в сб.: Бесконечные антагонистические игры, М., 1963, с. 497-503. Е. Б. Яновская. |
|
|