"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ПРЕДЕЛЬНАЯ ТОЧКАЗначение ПРЕДЕЛЬНАЯ ТОЧКА в математической энциклопедии: множества- точка, в любой окрестности к-рой содержится по крайней мере одна точка данного множества, отличная от нее самой. Рассматриваемые множества и точка предполагаются принадлежащими нек-рому топологич. пространству. Множество, содержащее все свои П. т., наз. замкнутым. Совокупность всех П. т. множества Мназ. производным множеством и обозначается М'. Если рассматриваемое топологич. пространство X удовлетворяет первой аксиоме отделимости (для любых двух его точек х и усуществует окрестность U(х), не содержащая точку у), то каждая окрестность П. т. нек-рого множества содержит бесконечно много точек этого множества и производное множество М' - замкнуто. Всякая прикосновения точка множества Мявляется либо его П. т., либо изолированной. Лит.:[1] Александров II. С., Введение в теорию множеств и общую топологию, М., 1977; [2] Xаусдорф Ф., Теория множеств, пер. с нем., М.- Л., 1937. Л. Д. Кудрявцев. |
|
|