Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ПРАВАЯ ГРУППА

Значение ПРАВАЯ ГРУППА в математической энциклопедии:

- полугруппа, простая справа (см. Простая полугруппа).и удовлетворяющая левостороннему закону сокращения. Всякая П. г. является вполне простой полугруппой. Свойство полугруппы Sбыть П. г. эквивалентно любому из следующих условий: a) Sпроста справа и содержит идемпотент, б) Sрегулярна и удовлетворяет левостороннему закону сокращения, в) Sобладает разбиением на левые идеалы, являющиеся (необходимо изоморфными) группами, г) Sесть прямое произведение группы и полугруппы правых нулей (см. Идемпотентов полугруппа). Симметричным к понятию П. г. является понятие левой группы. Группы и только они суть одновременно П. г. и левые группы. Всякая вполне простая полугруппа обладает разбиением на правые (левые) идеалы, являющиеся (необходимо изоморфными) правыми (левыми) группами.

Лит.:Ш Клиффорд А., Престон Г., Алгебраическая теория полугрупп, пер. с англ., т. 1, М., 1972.

Л. И. Шеврин.