Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ПОЧТИ ПЕРИОД

Значение ПОЧТИ ПЕРИОД в математической энциклопедии:

- понятие теории почти периодических функций, являющееся обобщением понятия периода. Для равномерной почти периодич. функции , число t=tf(e) наз. e-почти периодом функции f(x), если для всех хвыполняется неравенство

Для обобщенных почти периодич. функций понятие П. п. определяется сложнее. Напр., в пространстве функций Степанова е-почти период т определяется неравенством где - расстояние между функциями f(x).и j(х). в метрике пространства .

Множество П. п. функции f(х).наз. относительно плотным, если существует число L=L(e, f)>0 такое, что в каждом интервале (a, a+L).действительной оси найдется хотя бы одно число этого множества. Определение равномерных почти периодич. функций и почти периодич. функций по Степанову может быть основано на требовании существования относительно плотных множеств e-почти периодов у этих функций.

Лит.:[1] Левитан Б. М., Почти-периодические функции, М., 1953. Е. А. Бредихина.