Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ПОЛУСОВЕРШЕННОЕ КОЛЬЦО

Значение ПОЛУСОВЕРШЕННОЕ КОЛЬЦО в математической энциклопедии:

- кольцо, каждый конечно порожденный левый (или каждый конечно порожденный правый) модуль над к-рым обладает проективным накрытием. Кольцо Rс радикалом Джекобсона J оказывается П. к. тогда и только тогда, когда Rполулокально и у каждого идемпотента факторкольца R/J имеется идемпотентный прообраз в R. Первое условие можно заменить требованием классич. полупростоты факторкольца R/J, а второе - возможностью "поднимать" из R/J в Rмодульные прямые разложения. П. к. характеризуются также условием, что каждый модуль допускает прямое разложение, относительно к-рого дополняемы максимальные прямые слагаемые. Кольцо матриц над П. к. является П. к.

См. также Совершенное кольцо и лит. при этой статье.

Л. А. Скорняков.