Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ПОЛУПРОСТОЙ ЭЛЕМЕНТ

Значение ПОЛУПРОСТОЙ ЭЛЕМЕНТ в математической энциклопедии:

линейной алгебраической группы G - элемен т , где V - конечномерное векторное пространство над алгебраически замкнутым полем К, являющийся полупростым эндоморфизмом пространства V. Понятие П. э. не зависит от реализации группы Gв виде линейной группы, а определяется лишь структурой ал-гебраич. группы на G. Элемент полупрост тогда и только тогда, когда для оператора правого сдвига rg в К[G]существует базис из собственных векторов. При любом рациональном линейном представлении множество П. э. группы Gотображается на множество П. э. группы j(G).

Аналогично определяются полупростые элементы алгебраической алгебры Ли , отвечающей группе G; дифференциал представления j отображает множество

П. э. алгебры на множество П. э. своего образа. Полупростой элемент алгебры Ли - это элемент такой, что присоединенное линейное преобразование ad Xявляется полупростым эндоморфизмом векторного пространства . Если - алгебра Ли редуктивной линейной алгебраич. группы, то Xесть П. э. алгебры тогда и только тогда, когда X- полупростой эндоморфизм пространства V.

Лит.:[1] Борель А., Линейные алгебраические группы, пер. с англ., М., 1972; [2] Мерзляков Ю. И., Рациональные группы, М., 1980; [3] Хамфри Д ж., Линейные алгебраические группы, пер. с англ., М., 1980. А. Л. Онищик.