"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ПОЛУПРАВИЛЬНЫЕ МНОГОГРАННИКИЗначение ПОЛУПРАВИЛЬНЫЕ МНОГОГРАННИКИ в математической энциклопедии: тела Архимеда,- выпуклые многогранники, все грани к-рых суть правильные многоугольники, а многогранные углы конгруэнтны или симметричны. Данные о П. м. приведены в таблице, где В - число вершин, Р - число ребер, Г - число граней, Г k. - число nk- угольных граней, s - число граней, сходящихся в каждой вершине, в том числе s1 n1 -угольных, s2 n2 -уголышх и т. д. В евклидовом пространстве R3 существует 13 П. м. [см. рис., 1-14, иногда выделяют два вида ромбокубооктаэдра (рис., 3-4), к-рые различаются тем, что верхняя часть многоугольника, состоящая из 5 квадратов и 4 правильных треугольников, повернута как целое на угол p/4] и две бесконечные серии - призмы (рис., 15 )и антипризмы (рис., 16). Полуправильные многогранники
Невыпуклых (звездчатых) П. м. больше 51. Лит.:[1] Энциклопедия элементарной математики, кн. 4- Геометрия, М.-Л., 1963; [2] Люстерник Л. А., Выпуклые фигуры и многогранники, М., 1956; [3] Bruckner M., Vielecke und Vielflache. Theorie.. und Geschichtc, Lpz., 1900: [4] Веннинджер М., Модели многогранников, пер. с англ., М., 1974. А. Б. Иванов. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|