"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ПОЛУНОРМАЗначение ПОЛУНОРМА в математической энциклопедии: - конечная неотрицательная функция рна векторном пространстве Е(над нолем действительных или комплексных чисел), подчиненная условиям: для всех и скаляров l. Примером П. служит норма;. отличие заключается в том, что для П. допустимо р(х)=0 при . Если на векторном пространстве задана полунорма р, а на его подпространстве - линейный функционал f, подчиненный условию , то его можно продолжить на все пространство с сохранением этого условия (теорема Хана - Банаха). В математич. анализе наиболее употребительны отделимые топологические векторные пространства, базис окрестностей нуля в к-рых можно составить из выпуклых множеств. Такие пространства наз. локально выпуклыми. В этих пространствах базис может быть описан неравенствами р(x)<1, где р - непрерывные П. В то же время в практике математич. анализа встречаются и такие топологич. векторные пространства (в том числе и с метризуемой топологией), на к-рых нет нетривиальных непрерывных П. Простейший пример такого рода - пространство Lq(0, 1), где 0<q<1. Лит.:[1] Бурбаки Н., Топологические векторные пространства, пер. с франц., М., 1959; [2] Рудин У., Функциональный анализ, пер. сангл., М., 1975. Е. А. Горин. |
|
|