Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННАЯ ФОРМА

Значение ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННАЯ ФОРМА в математической энциклопедии:

- выражение вида


где aik=aki, принимающее неотрицательные значения при любых действительных значениях x1, х 2, . . ., х n и обращающееся в нуль лишь при xl=x2=. . . = х п=0. Т. о., П. о. ф. есть квадратичная форма специального типа. Любая П. о. ф. приводится с помощью линейного преобразования к виду


Для того чтобы форма


была П. о. ф., необходимо и достаточно, чтобы

, где


В любой аффинной системе координат расстояние точки от начала координат выражается П. о. ф. от координат точки.

Форма


такая, что и для всех значений x1, х 2, . .., х п и f=0 лишь при x1=x2=. . .=xn=0 наз. эрмитовой П. о. ф.

С понятием П. о. ф. связаны также понятия: 1) положительно определенной матрицы - такой матрицы, что есть эрмитова П. о. ф.; 2) положительно определенного ядра - такой функции К( х, у) = К( у, х), что


для любой функции j(х) с интегрируемым квадратом; 3) положительно определенной функции - такой функции f(x), что ядро К( х, y) = f(x-у).является положительно определенным. Класс непрерывных положительно определенных функций f(x) с f(0)=1 совпадает с классом характеристических функций законов распределения случайных величин. БСЭ-3