"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ПОДПРЯМОЕ ПРОИЗВЕДЕНИЕЗначение ПОДПРЯМОЕ ПРОИЗВЕДЕНИЕ в математической энциклопедии: алгебраических систем - специальный тип подсистем прямого (декартова) произведения систем. Пусть ,- семейство однотипных алгебраич. систем и пусть А == - прямое произведение этих систем с проекциями . Алгебраич. система Втого же типа паз. подпрямым произведением систем АI, если существует такое вложение , что гомоморфизмы , сюръективны. Иногда под П. п. понимается любая система, изоморфная подсистеме прямого произведения: тогда системы, удовлетворяющие сформулированному выше условию, наз. специальными подпрямым и произведениями. В теории колец и в теории модулей П. п. наз. также нодпрямой суммой. Подпрямое произведение (подпрямую сумму) обозначают ( соответственно). Следующие условия равносильны: а) система Вявляется П. п. систем ; б) существует разделяющее семейство сюръективных гомоморфизмов ; в) существует такое семейство конгруэнции , системы В, что пересечение этих конгруэнции является единичной конгруэнцией и для каждого . Всякая универсальная алгебра является П. п. подпрямо неразложимых алгебр. С теоретико-категорной точки зрения понятие П. п. двойственно понятию правильного произведения алгебраич. систем с нулевыми (одноэлементными) подсистемами, м. Ш. Цаленко. |
|
|