"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ПОДВИЖНАЯ ОСОБАЯ ТОЧКАЗначение ПОДВИЖНАЯ ОСОБАЯ ТОЧКА в математической энциклопедии: - особая точка z0 решения дифференциального уравнения F(z, w, w')=0 (F - аналитич. функция), рассматриваемого как функция w(z).комплексного переменного z, при условии, что решения того же уравнения с близкими начальными данными имеют близкие к z0 особые точки, не совпадающие с z0. Классич. пример П. о. т. возникает при рассмотрении уравнения где Ри Q - голоморфные функции в нек-рой области пространства С 2. Если поверхность {Q=0} неприводима и проектируется вдоль оси Ow на область , то все точки области W являются П. о. т.; для решения с начальным условием (z0, w0), где точка z0 - алгебраическая точка ветвления. Лит.:[1] Голубев В. В., Лекции по аналитической теории дифференциальных уравнений, 2 изд., М.- Д., 1950. Ю. С. Илъяшенко. |
|
|