Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ПОДВИЖНАЯ ОСОБАЯ ТОЧКА

Значение ПОДВИЖНАЯ ОСОБАЯ ТОЧКА в математической энциклопедии:

- особая точка z0 решения дифференциального уравнения F(z, w, w')=0 (F - аналитич. функция), рассматриваемого как функция w(z).комплексного переменного z, при условии, что решения того же уравнения с близкими начальными данными имеют близкие к z0 особые точки, не совпадающие с z0. Классич. пример П. о. т. возникает при рассмотрении уравнения


где Ри Q - голоморфные функции в нек-рой области пространства С 2. Если поверхность {Q=0} неприводима и проектируется вдоль оси Ow на область , то все точки области W являются П. о. т.; для решения с начальным условием (z0, w0), где


точка z0 - алгебраическая точка ветвления.

Лит.:[1] Голубев В. В., Лекции по аналитической теории дифференциальных уравнений, 2 изд., М.- Д., 1950.

Ю. С. Илъяшенко.