"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ПЕТТИСА ИНТЕГРАЛЗначение ПЕТТИСА ИНТЕГРАЛ в математической энциклопедии: - интеграл от векторнозначной функции по скалярной мере, являющийся т. н. слабым интегралом. Введен Б. Петтисом [1]. Пусть - векторное пространство функций со значениями в банаховом пространстве X, заданных на множестве со счетно аддитивной мерой m на s-алгебре подмножеств Е. Функция x(t).наз. слабо измеримой, если для любого измерима скалярная функция f[x(t)]. Функция х(t).интегрируема по Петтису на измеримом подмножестве , если для любого интегрируема на Мфункция f[x(t)]и существует элемент такой, что Тогда и наз. интегралом Петтиса. Такой интеграл для случая Е=( а, b).с обычной мерой Лебега был впервые введен И. М. Гельфандом [2]. Лит.:[1] Pettig В., "Trans. Amer. Math. Soc.", 1938, v. 44, № 2, p. 277-304; [2] Гельфанд И. М., "Зап. Науково-досл. iнст. матем. и мех. Харкiв. матем. тов.", 1936, т. 13, в. 1, с. 35-40; [3] Нildеbrandt Т., "Bull. Amer. Math. Soc.", 1953, v. 59, p. 111-39; [4] Xилле Э., Филлипс Р., Функциональный анализ и полугруппы, пер. с англ., М., 1962. В. И. Соболев. |
|
|