"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ПЕРРОНА МЕТОДЗначение ПЕРРОНА МЕТОД в математической энциклопедии: - метод решения Дирихле задачи для Лапласа уравнения, основанный на свойствах субгармонических функций (и супергармонич. функций). Первоначальное изложение этого метода было дано О. Перроном [1], существенное развитие получено в работах Н. Винера [3] и М. В. Келдыша [4]. Пусть W - коночная область евклидова пространства с границей - действительная функция на . Пусть Ф - (непустое) семейство всех супергармонич. функций в широком смысле (т. е. функция принадлежит Ф), ограниченных снизу и таких, что и пусть и пусть - верхняя огибающая семейства Y. Относительно функции (и ) имеются только три возможности: - гармонич. функция, причем всегда Функция , наз. разрешимой, если обе огибающие и конечны и совпадают. В этом случае гармонич. функция есть обобщенное решение задачи Дирихле для функции (в смысле Винера - Перрона). Для того чтобы функция , была разрешимой, необходимо и достаточно, чтобы она была интегрируемой по гармонич. мере на Г (теорема Брело). Любая непрерывная конечная функция , разрешима (теорема Винера). Точка наз. регулярной граничной точкой, если для любой непрерывной конечной функции , выполняется предельное соотношение Регулярность всех точек равносильна существованию классич. решения wf(x).задачи Дирихле для любой непрерывной конечной функции причем в этом случае ; область W, все граничные точки к-рой регулярны, иногда наз. также регулярной. Для того чтобы точка была регулярной, необходимо и достаточно, чтобы существовал барьер в у 0. Точки , не являющиеся регулярными, наз. иррегулярными граничными точками. Напр., иррегулярными граничными точками являются изолированные точки и при вершины достаточно сильно заостренных входящих в область W острий (пример Лебега). Множество всех иррегулярных точек Г есть множество типа Fs емкости нуль. Пусть имеется последовательность областей Wk, , такая, что , и непрерывная конечная функция , продолжена непрерывно на окрестность Г. Тогда равномерно внутри W; в случае регулярных областей Wk здесь получается конструкция обобщенного решения задачи Дирихле по Винеру. Рассмотрим теперь для области W без внутренней границы произвольную последовательность областей В этом случае, вообще говоря, Задача Дирихле устойчива в области W или в замкнутой области , если соответственно для всех или для всех . Для устойчивости задачи Дирихле в области W. необходимо и достаточно, чтобы множества всех иррегулярных точек дополнений CW. и совпадали; для устойчивости в замкнутой области - чтобы дополнение не имело иррегулярных точек (теоремы Келдыша, см. [4], где построен также пример регулярной области W, внутри к-рой задача Дирихле неустойчива). См. также Верхних и нижних функций метод. Лит.:[1] Perron О., "Math. Z.", 1923, Bd 18, S. 42-54; [2] Петровокий И. Г., "Успехи ыатем. наук",. 1941 [1940], в. 8, с. 107-14; [3] Wiеnеr N., "J. Math, and Phys.", 1924, v. 3, p. 24-51, 127-46; 1925, v. 4, p. 21-32; [41 Келдыш М. В., "Успехи матем. наук", 1941 [1940], п. 8, с. 171 - 231; [5] Брело М., Основы классической теории потенциала, пер. с франц., М., 1964. Е. Д. Соломенцев. |
|
|