Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ПАРАКОМПАКТНОСТИ КРИТЕРИИ

Значение ПАРАКОМПАКТНОСТИ КРИТЕРИИ в математической энциклопедии:

следующие утверждения, равносильные для произвольного вполне регулярного хаусдорфова пространства X.1) Xпаракомпактно. 2) В каждое открытое покрытие пространства Xможно вписать локально конечное открытое покрытие. 3) В каждое открытое покрытие пространства Xможно вписать s-локально конечное открытое покрытие, т. е . открытое покрытие, распадающееся на счетное множество локально конечных в Xсемейств множеств. 4) В каждое открытое покрытие пространства Xможно вписать локально конечное покрытие (о строении элементов к-рого не предполагается ничего). 5) Каково бы ни было открытое покрытие у пространства X, существует открытое покрытие этого пространства, звездно вписанное в g. 6) В каждое открытое покрытие пространства Xможно вписать консервативное покрытие. 7) Каково бы ни было открытое покрытие у пространства X, существует счетное семейство l1, l2, ... открытых покрытий этого пространства такое, что для каждой точки и каждой ее окрестности О х найдутся и номер i, удовлетворяющие условию: каждый элемент покрытия li, пересекающийся с Ox, содержится в U(т. е. вся звезда множества О х относительно li лежит в U).8) Каково бы ни было открытое покрытие w пространства X, существует непрерывное отображение f пространства Xна нек-рое метрич. пространство Y, подчиненное условию: у каждой точки пространства Y существует окрестность, прообраз к-рой при f содержится в элементе покрытия w. 9) Пространство Xколлективно нормально и слабо парокомпактно .

А. В. Архангельский.