Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ОТКРЫТОЕ ОТОБРАЖЕНИЕ

Значение ОТКРЫТОЕ ОТОБРАЖЕНИЕ в математической энциклопедии:

теорема об открытом отображений: линейный непрерывный оператор А , отображающий банахово пространство Xна все банахово пространство У, является открытым отображением, т. е. A(G).открыто в Yдля любого G, открытого в X; доказана С. Банахом (S. Banach). В частности, непрерывный линейный оператор А, отображающий взаимно однозначно банахово пространство Xна банахово пространство Y, является гомеоморфизмом, т. <е. А -1- также линейный непрерывный оператор (теорема Банаха о гомеоморфизме).

Условиям теоремы об О. о. удовлетворяет, например, всякий ненулевой линейный непрерывный функционал, определенный на вещественном (комплексном) банаховом пространстве Xсо значениями в R (в С).

Теорема об О. о. допускает следующее обобщение: непрерывный линейный оператор, отображающий совершенно полное тонологич. векторное пространство Xна бочечное пространство Y, есть открытое отображение. К теореме об О. о. примыкает теорема о замкнутом графике (см. Замкнутый график, теорема о замкнутом графике).

Лит.:[1] Иосида К., Функциональный анализ, пер. с англ., М., 1967; [2] Робертсон А. <П., Робортсон В. Дж., Топологические векторные пространства, пер. с англ., М., 1967. В. И. Соболев.