"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ОТКРЫТОЕ ОТОБРАЖЕНИЕЗначение ОТКРЫТОЕ ОТОБРАЖЕНИЕ в математической энциклопедии: теорема об открытом отображений: линейный непрерывный оператор А , отображающий банахово пространство Xна все банахово пространство У, является открытым отображением, т. е. A(G).открыто в Yдля любого G, открытого в X; доказана С. Банахом (S. Banach). В частности, непрерывный линейный оператор А, отображающий взаимно однозначно банахово пространство Xна банахово пространство Y, является гомеоморфизмом, т. <е. А -1- также линейный непрерывный оператор (теорема Банаха о гомеоморфизме). Условиям теоремы об О. о. удовлетворяет, например, всякий ненулевой линейный непрерывный функционал, определенный на вещественном (комплексном) банаховом пространстве Xсо значениями в R (в С). Теорема об О. о. допускает следующее обобщение: непрерывный линейный оператор, отображающий совершенно полное тонологич. векторное пространство Xна бочечное пространство Y, есть открытое отображение. К теореме об О. о. примыкает теорема о замкнутом графике (см. Замкнутый график, теорема о замкнутом графике). Лит.:[1] Иосида К., Функциональный анализ, пер. с англ., М., 1967; [2] Робертсон А. <П., Робортсон В. Дж., Топологические векторные пространства, пер. с англ., М., 1967. В. И. Соболев. |
|
|