"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ОРТОГОНАЛЬНАЯ МАТРИЦАЗначение ОРТОГОНАЛЬНАЯ МАТРИЦА в математической энциклопедии: - матрица над коммутативным кольцом R с единицей 1, для к-рой транспонированная матрица совпадает с обратной. Определитель О. м. равен +1. Совокупность всех О. м. порядка пнад Rобразует подгруппу полной линейной группы GLn (R). Для любой действительной О. м. асуществует такая действительная О. м. с, что где Невырожденная комплексная матрица а тогда и только тогда подобна комплексной О. м., когда система ее элементарных делителей обладает следующими свойствами: 1) для элементарные делители (x- l)m и ( х-l-1) т повторяются одно и то же число раз; 2) каждый элементарный делитель вида ( х +1)2l повторяется четное число раз. Лит.:[1] Мальцев А. И., Основы линейной алгебры, 4 изд., М., 1975. Д. А. Супруненко. |
|
|