"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ОРБИТАЛЬНАЯ УСТОЙЧИВОСТЬЗначение ОРБИТАЛЬНАЯ УСТОЙЧИВОСТЬ в математической энциклопедии: свойство траектории x (решения х(t)) автономной системы обыкновенных дифференциальных уравнений состоящее в следующем: для всякого e>0 существует d>0 такое, что всякая положительная полутраектория, начинающаяся в d-окрестности траектории x, содержится в e-окрестности траектории x. Здесь под траекторией понимается множество значений решения x(t),, системы (*), а под положительной полутраекторией - множество значений решения x(t).при . Если решение x(t).устойчиво по Ляпунову, то его траектория орбитально устойчива. Траектория x наз. асимптотически орбитально устойчивой, если она орбитально устойчива и, кроме того, найдется d0>0 такое, что траектория всякого решения x(t).системы (*), начинающегося в d0 -окрестности траектории x (т. е. d(x(0), x)<d0), стремится при к траектории x, то есть где - расстояние от точки хдо множества x (d(x, у) - расстояние между точками хи у). Роль понятия асимптотической орбитальной устойчивости основана на следующих фактах. Периодич. решение системы (*) никогда не бывает асимптотически устойчивым. Но если у периодич. решения такой системы модули всех мультипликаторов, кроме одного, меньше единицы, то траектория этого периодич. решения асимптотически орбитально устойчива (Андронова - Витта теорема). Имеет место также более общая теорема Демидов и ча (см. [3]): пусть x0(t) - ограниченное решение системы (*), причем и пусть система уравнений в вариациях вдоль x0(t).- правильная (см. Правильная линейная система), причем все ее Ляпунова характеристические показатели, кроме одного, отрицательны; тогда траектория решения x0(t).асимптотически орбитально устойчива. Лит.: [1] Андронов А. А., Собр. трудов, М., 1956; [2] Андропов А. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; [3] Демидович Б. П., "Дифференц. уравнения", 1968, т. 4, № 4, с. 575-88; № 8, с. 1359-73. В. М. Миллионщиков. |
|
|