"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ОГРАНИЧЕННО КОМПАКТНОЕ МНОЖЕСТВОЗначение ОГРАНИЧЕННО КОМПАКТНОЕ МНОЖЕСТВО в математической энциклопедии: в линейном топологическом пространстве X- такое множество М, что замыкание всякого ограниченного подмножества компактно и содержится в М(для нормированного пространства в сильной, соответственно слабой, топологии это равносильно компактности, соответственно слабой компактности, пересечений Мс шарами). Выпуклое замкнутое множество в нормированном пространстве является О. к. м. в том и только в том случае, когда оно локально компактно. О. к. м. находят применение в теории приближения в банаховых пространствах; они обладают свойством существования наилучшего приближения элемента. Бочечное линейное топологич. пространство, являющееся (в самом себе) О. к. м. в слабой, соответственно сильной, топологии есть рефлексивное пространство, соответственно монтелево пространство. Нормированное пространство, являющееся О. к. м., конечномерно. Лит.:[1] Кlee V. L., "Trans. Amer. Math. Soc", 1953, v. 74, p. 10-43; [2] Эдвардс Р., Функциональный анализ, пер. с англ., М., 1969. Л. П. Власов. |
|
|