"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
НЬЮТОНА - ЛЕЙБНИЦА ФОРМУЛАЗначение НЬЮТОНА - ЛЕЙБНИЦА ФОРМУЛА в математической энциклопедии: - формула, выражающая значение определенного интеграла от заданной функции f по отрезку в виде разности значений на концах отрезка любой первообразной Fэтой функции Названа именами И. Ньютона (I. Newton) и Г. Лейбница (G. Leibniz), т. к. правило, выражаемое формулой (*), было известно им обоим, но опубликовано позже. Эта формула справедлива, если функция f интегрируема по Лебегу на отрезке [ а, b], в частности если функция f непрерывна на этом отрезке и где С - нек-рая постоянная. В этом случае функция Fабсолютно непрерывна и почти всюду на отрезке [a, b] (всюду, если f непрерывна на [ а, b])справедливо равенство F' (х) = f(x). Обобщением Н.- Л. ф. является Стокса формула для ориентированных многообразий с краем. Л. Д. Кудрявцев. |
|
|