"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
НЕРАЗВЕТВЛЕННЫЙ ХАРАКТЕРЗначение НЕРАЗВЕТВЛЕННЫЙ ХАРАКТЕР в математической энциклопедии: - характер группы Галуа расширения Галуа локальных полей , тривиальный на подгруппе инерции. Любой Н. х. можно рассматривать как характер группы Галуа расширения - максимальное неразветвленное подполе в расширении K/k. Н. х. образуют подгруппу в группе всех характеров. Неразветвленным характером наз. также характер мультипликативной группы локального поля k, тривиальный на группе единиц поля k. Это определение согласовано с предыдущим, т. к. согласно основной теореме локальной теории полей классов для любого абе-лева расширения локальных полей К/к определен ка-нонич. гомоморфизм взаимности , позволяющий отождествить характеры группы G(K/k )с нек-рой подгруппой в группе характеров группы k*. Для расширения Галуа глобальных полей K/k характер группы Галуа G(K/k )наз. неразветвленным в точке поля к, если он остается неразветвленным в указанном выше смысле п при ограничении на подгруппу разложения любой точки поля К, лежащей над . Аналогично, характер группы классов иделей С(k)поля кназ. неразветвленным в , если его ограничение на подгруппу единиц пополнения поля котносительно тривиально, где группа вложена стандартным образом в С(k). Из глобальной теории полей классов следует, что оба эти определения неразветвленности в точке согласованы, как и в локальном случае. Лит.:[1] Вейль А., Основы теории чисел, пер. с англ., М., 1972. Л. В. Кузьмин. |
|
|