"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
НЕПРИВОДИМОЕ МНОГООБРАЗИЕЗначение НЕПРИВОДИМОЕ МНОГООБРАЗИЕ в математической энциклопедии: - алгебраическое многообразие, являющееся неприводимым топологическим пространством в топологии Зариского. Иначе говоря, Н. м.- алгебраич. многообразие, к-рое нельзя представить в виде объединения двух собственных замкнутых алгебраич. подмногообразий. Аналогично определяется неприводимость схемы. Для гладкого (и даже нормального) многообразия понятия неприводимости и связности совпадают. Каждое неприводимое многообразие обладает единственной общей точкой. По аналогии с разложением топологич. пространства на неприводимые компоненты любое алгебраич. многообразие является объединением конечного числа неприводимых замкнутых подмногообразий. Алгебраическим фундаментом такого представления (доставляющим заодно и более точную формулировку) является примарное разложение в коммутативных нётеровых кольцах. Произведение Н. м. над алгебраически замкнутым полем также неприводимо. Для произвольного основного поля этот факт уже не верен. Полезен также следующий вариант понятия Н. м.: многообразие X над нолем кназ. геометрически неприводимым, если для любого расширения поля kнеприводимым остается многообразие , полученное из Xзаменой базы. В. Я. Данилов. |
|
|