Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

НЕПРЕРЫВНОСТИ МОДУЛЬ

Значение НЕПРЕРЫВНОСТИ МОДУЛЬ в математической энциклопедии:

- одна из основных характеристик непрерывных функций. Н. м. непрерывной на отрезке функции определяется как

Определение Н. м. введено А. Лебегом (A. Lebesgue) в 1910, хотя по существу понятие было известно и ранее. Если Н. м. функции удовлетворяет условию

где , то говорят, что функция удовлетворяет Липшица условию порядка Для того чтобы неотрицательная функция была Н. м. нек-рой непрерывной функции, необходимо и: достаточно, чтобы она обладала следующими свойствами: не убывает, непрерывна, Рассматриваются также Н. м. высших порядков

где

- конечная разность k-го порядка функции f(x), иН. м. в произвольных пространствах функций, напр, интегральный Н. м. функции , интегрируемой на отрезке со степенью

Для -периодической функции интеграл в выражении (*) берется по отрезку [0,].

Лит.:[1] Зигмунд А., Тригонометрические ряды, пер. с англ., [2 изд.], т. 1, М., 1965; [2] Ахиезер Н. И., Лекции по теории аппроксимации, 2 изд., М., 1965; [3] Дзядык В. К., Вьедение в теорию равномерного приближения функций полиномами, М., 1977. Л. В. Ефимов.