"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
НЕОСЦИЛЛЯЦИИ ПРОМЕЖУТОКЗначение НЕОСЦИЛЛЯЦИИ ПРОМЕЖУТОК в математической энциклопедии: промежуток несопряженности,- связный промежуток Jчисловой оси такой, что любое нетривиальное решение линейного обыкновенного дифференциального уравнения и-го порядка с действительными коэффициентами имеет на нем самое большее п-1 нулей, считая т- кратный нуль за тнулей. Свойства решений уравнения (*) на Н. п. хорошо изучены (см., напр., [1] - [3]). Имеются различные обобщения понятия Н. п. для линейных систем дифференциальных уравнений, для нелинейных дифференциальных уравнений, а также для других типов уравнений (разностных, с отклоняющимся аргументом). Лит.:[1] Xартман Ф., Обыкновенные дифференциальные уравнения, пер. с англ., М., 1970; [2] Левин А. Ю., "Успехи матем. наук", 1969, т. 24, в. 2, с. 43-96; [3] Coppel W. A., Disconjugacy, В.-N. Y., 1971. Ю. В. Комленко. |
|
|